Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ibrahim Baba, ${ }^{\text {a }}$ Yang Farina, ${ }^{\text {a }}$

A. Hamid Othman, ${ }^{\text {a }}$

Ibrahim Abdul Razak, ${ }^{\text {b }}$
Hoong-Kun Fun ${ }^{\text {b }}$ and Seik Weng $\mathrm{Ng}^{\text {c }}$ *
${ }^{\text {a }}$ School of Chemical Sciences, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia, ${ }^{\mathbf{b}}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\mathrm{c}}$ Institute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail:
h1nswen@umcsd.um.edu.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.011 \AA$
R factor $=0.053$
$w R$ factor $=0.146$
Data-to-parameter ratio $=35.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(N-cyclohexyl- N-ethyldithiocarbamato-S, \mathbf{S}^{\prime})lead(II)

The Pb atom in the title compound, $\left[\mathrm{Pb}\left(\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NS}_{2}\right)_{2}\right]$, is chelated in an anisobidentate manner by the dithiocarbamate group $[\mathrm{Pb}-\mathrm{S}=2.710(2) / 2.883(2) \AA$ and $2.700(2) /$ $2.841(2) \AA$ A. The four-coordinate geometry is raised to six through the involvement of the double-bonded S atoms of adjacent dithiocarbamato groups; the $\mathrm{Pb} \cdots \mathrm{S}$ interactions $[\mathrm{Pb} \cdots \mathrm{S}=3.457$ (2) and 3.508 (2) \AA] result in a chain structure for the compound.

Comment

Several lead(II) dithiocarbamates have been reported in the literature, e.g. bis(dimethyldithiocarbamato)lead (Iwasaki, 1980), bis(diethyldithiocarbamato)lead (Zvonkova et al., 1967), bis(diisopropyldithiocarbamato)lead (Ito \& Iwasaki, 1980) and bis(N-ethyl- N-isopropyldithiocarbamato)lead(II) (Trindade et al., 1997; Ng, 1999). These compounds, as well as the title dithiocarbamate, (I), have the Pb atoms in a distorted tetrahedral geometry, and adjacent molecules are linked by $\mathrm{Pb} \cdots \mathrm{S}$ interactions into chains. The bond dimensions as well as the interactions in the title compound are similar to those found in other dithiocarbamates, and the size of the cyclohexyl ring does not appear to affect the packing.

(I)

Experimental

An excess quantity of carbon disulfide was added dropwise to a solution of lead(II) chloride and ethylcyclohexylamine (1:2 molar ratio) in ethanol. The dithiocarbamate slowly separated from solution; this was collected and air dried to afford crystals (m.p. 421422 K). Elemental analysis, found (calculated in parenthesis): C 35.37 (35.36), H 4.75 (5.23), N 4.73 (4.58), S 21.44% (20.96\%).

Crystal data
$\left[\mathrm{Pb}\left(\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NS}_{2}\right)_{2}\right]$
$M_{r}=611.89$
Triclinic, $P \overline{1}$
$a=9.7180$ (2) A
$b=10.1871$ (2) \AA
$c=11.8751$ (3) \AA
$\alpha=95.586(1)^{\circ}$
$\beta=92.978(1)^{\circ}$
$\gamma=99.142(1)^{\circ}$
$V=1152.45(4) \AA^{3}$

$$
Z=2
$$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.763 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 4596
reflections
$\theta=2.6-33.2^{\circ}$
$\mu=7.69 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Parallelepiped, yellow
$0.48 \times 0.28 \times 0.24 \mathrm{~mm}$

Received 4 December 2000 Accepted 12 December 2000 Online 22 December 2000

Figure 1
ORTEPII (Johnson, 1976) plot of (I) at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.

Data collection

Siemens CCD area-detector
diffractometer
ω scans
Absorption correction: empirical
(SADABS; Sheldrick, 1996)
$T_{\min }=0.073, T_{\max }=0.158$
10652 measured reflections

7977 independent reflections
4557 reflections with $(I)>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=33.18^{\circ}$
$h=-11 \rightarrow 14$
$k=-15 \rightarrow 15$
$l=-18 \rightarrow 14$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.146$
$S=0.99$
7977 reflections
226 parameters

H atoms constrained $w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0650 P)^{2}\right]$ where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=1.32 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-2.09 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$\mathrm{Pb} 1-\mathrm{S} 1$	$2.710(2)$	$\mathrm{Pb} 1-\mathrm{S} 3$	$2.700(2)$
$\mathrm{Pb} 1-\mathrm{S} 2$	$2.883(2)$	$\mathrm{Pb} 1-\mathrm{S} 4$	$2.841(2)$
$\mathrm{Pb} 1-\mathrm{S} 2^{\mathrm{i}}$	$3.508(2)$	$\mathrm{Pb} 1-\mathrm{S} 4^{\mathrm{ii}}$	$3.457(2)$
$\mathrm{S} 1-\mathrm{Pb} 1-\mathrm{S} 2$	$64.0(1)$	$\mathrm{S} 2-\mathrm{Pb} 1-\mathrm{S} 4^{\mathrm{ii}}$	$141.6(1)$
$\mathrm{S} 1-\mathrm{Pb} 1-\mathrm{S} 2^{\mathrm{i}}$	$117.3(1)$	$\mathrm{S} 2^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{S} 3$	$122.1(1)$
$\mathrm{S} 1-\mathrm{Pb} 1-\mathrm{S} 3$	$98.9(1)$	$\mathrm{S} 2^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{S} 4$	$148.0(1)$
$\mathrm{S} 1-\mathrm{Pb} 1-\mathrm{S} 4$	$90.0(1)$	$\mathrm{S} 2^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{S} 4^{\mathrm{ii}}$	$80.8(1)$
$\mathrm{S} 1-\mathrm{Pb} 1-\mathrm{S} 4^{\mathrm{ii}}$	$111.4(1)$	$\mathrm{S} 3-\mathrm{Pb} 1-\mathrm{S} 4$	$64.6(1)$
$\mathrm{S} 2-\mathrm{Pb} 1-\mathrm{S} 2^{\mathrm{i}}$	$70.4(1)$	$\mathrm{S} 3-\mathrm{Pb} 1-\mathrm{S} 4^{\mathrm{ii}}$	$127.5(1)$
$\mathrm{S} 2-\mathrm{Pb} 1-\mathrm{S} 3$	$89.9(1)$	$\mathrm{S} 4-\mathrm{Pb} 1-\mathrm{S} 4^{\mathrm{ii}}$	$73.3(1)$
$\mathrm{S} 2-\mathrm{Pb} 1-\mathrm{S} 4$	$140.9(1)$		

Symmetry codes: (i) $-x, 1-y,-z$; (ii) $1-x, 1-y,-z$.

The diffraction data are complete to $\theta=25^{\circ}$; the overall, slightly low, completeness of the diffraction data is because of the incompleteness in the $25<\theta<33^{\circ}$ range.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank Universiti Kebangsaan Malaysia and the National Science Council for R\&D, Malaysia (IRPA 09-02-02-0010, 09-02-02-0133, 09-02-02-0096, 09-02-03-0662 and 190-9609-2801), for supporting this work.

References

Ito, M. \& Iwasaki, H. (1980). Acta Cryst. B36, 443-444.
Iwasaki, H. (1980). Acta Cryst. B36, 2138-2139.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, OTennessee, USA.
Ng, S. W. (1999). Acta Cryst. C55, IUC9900091.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1996). SAINT and SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Trindade, T., O’Brien, P., Zhang, X.-M. \& Motevalli, M. (1997). J. Mater. Chem. 7, 1011-1016.
Zvonkova, Z. N., Khvatkina, A. N. \& Ivanova, N. S. (1967). Sov. Phys. Crystallogr. (Engl. Transl.), 12, 926-929.

